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o 

The study of the Hfickel limit for the one-dimensional Hubbard model is very complicated. 
It is necessary to prepare the Lieb-Wu system of equations for expansion and then to initialize 
the variables which appear in the system, which is not straightforward. However, it is remark- 
able that, for the second-order contribution to the energy in this limit, it is possible to obtain, 
after complicated manipulations, quite transparent expressions. The analytical solution is 
obtained order by order for the variables to 3 -2 which appear in the Lieb-Wu solution and the 
fl-i coefficient in the energy is calculated using these expansions. The energy can be calculated 
numerically using these analytic results for the variables for increasing values of N. 

1. I n t r o d u c t i o n  

The H u b b a r d  model  in one dimension is an example of  a highly nontrivial model  
in which the Schr6dinger equat ion can be t ransformed into a system of  transcen- 
dental  coupled equat ions which were first obtained by Lieb and W u  [1]. These are 
referred to as the L i e b - W u  equations [1,2,3]. It is the intention here to examine the 
general p roblem of  expanding the L i e b - W u  solution for the one-dimensional 
H u b b a r d  model  in the Hiickel limit in analytic form, that  is, the limit in which the 
resonance integral coupling/3 becomes very large. An introduction to this problem 
has already been presented [4], as well as numerical results for the expansion coeffi- 
cients in the asymptot ic  energy series of  the energy for a varying number  of  particles 
N in the cycle. The asymptot ic  expansion of  the energy for the infinite chain has 
already been introduced by  Misurkin and Ovchinnikov [5]. 

The one-dimensional  H u b b a r d  model  is a natural  extension of  the Heisenberg 
model.  The Hfickel limit o f  the H u b b a r d  model  is quite complicated, and we have 
investigated the ground state as well as the excited states in some detail, to obtain  
results in numerical  as well as analytic form [3,6]. Keeping in mind the complexi ty 
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of the calculation, it is possible to obtain results for the second order perturbation 
correction in explicit form. This is possible due to the fact that we are getting con- 
siderable decoupling of the Lieb-Wu equations in this limit. Nevertheless, the 
analytic calculation is not easy, as will be shown in this paper, although the final 
equations are found to be remarkably transparent. The Hubbard model has a 
number of physical applications. Of particular importance is the application of the 
two-dimensional model to describe high temperature superconductors. We have 
also used the one-dimensional model to construct and investigate interpolant 
polynomials [6]. 

There are several reasons for continuing such an investigation from a more ana- 
lytical point of view. It will be seen that studying the asymptotic limit as/3 tends 
to oo provides mathematical insights into the model in this limit. In particular, it 
will provide insight into the structure of the Lieb-Wu equations in this limit. In 
addition, once these analytical equations have been written down, these equations 
can be programmed relatively easily. The coefficients for the asymptotic expan- 
sions of the variables which appear in the Lieb-Wu equations have been calculated 
analytically to order/3-2 in this coupling, and the energy to order/3 -1 . It is found 
that these analytical expressions yield the required coefficients when evaluated 
numerically for rings with extremely large numbers of particles in the cycle. 

To begin with, the equations written down by Lieb and Wu will be introduced 
along with the relevant notation. The following system of transcendental equations 
will describe 4u + 2 cycles in terms of the momenta ki which appear in the wave 
function and the 7-~ which characterize the spin state: 

M 

Nkj = 27raj- 2 Z arctan2(dsin(kj) - %) , j =  l , .  . . ,Ne,  (1) 
7=1 

with 

N, 
2 Z arctan 2(% - dsin(ki)) = 27rd¢ + 2 Z arctan(T~ -- %), 

i=1 7~cr 

o =  1 , . - - , M ,  

d 2/3 
U 

(2) 

Here,/3 is the resonance transfer integral, and U is the one center Coulomb repul- 
sion integral in the Hamiltonian [2,3]. 

In the ground state calculations, cyclic chains with 4u + 2 sites with a half-filled 
band will be considered so that Ne = N. The ground state is then a singlet state 
and the number of down spins is given by M = 2u + 1. The results which are 
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reported are for A?g, however, similar results for excited states have been 
obtained. 

2. Asymptotic form of variables and equations 

The first stage of  the calculation is to build the symmetry  relations into (1) and 
(2) directly. F rom a calculational point of  view, this will be seen to be very impor- 
tant  because asymptotic  series can be calculated out to rather  large values of  N. 
Also, some changes can be made  which will make the equations more amenable to 
expansion in this limit. 

The L ieb-Wu equations contain n + u independent  variables. There are 
n = 2u + 1 independent  momen ta  ki and u spin variables ~-~ where n = N/2 and all 
the other  variables are related to this basis set by the following system of  
equations: 

ki = -kN+l-i, i = 1,. • .,N, 

To = - -Tn+ l_o  , a =  1 , . - . , v ,  

Tu+l ~ 0 .  

The steps will be described in detail for the first equation (1). It can be found 
numerical ly that  ~-o in (1) and (2) grow like a linear power o f d  for large d [4]. There- 
fore, we replace To by dTo so that the ~-~ which will now appear in the equations 
have been scaled by a linear factor of  d. Removing a factor of  d f rom the argument  
of  the arctangent  in (1), it is then replaced by B -I  so that  d--~ oe corresponds to 
B --~ 0. Consequently,  (1) can be writ ten as 

- z arctan ~,- 
7=1 / 

+ ~ 2arctan(2Sin(k.+i)-2r~)_ 2arc tan(2Sin_~ ~+')) 
.r=u+2 B 

Setting 7 = u + 1 + a in the second sum, the new limits run f rom 1 to u, hence 

Nkn+i=(2i-1)Tr ~-~2 . ['2sin(k.+i)-2~',y) - arc ant,. 
3~=1 

u ( ) .fasin(kn+i)'~ + Z 2 a r c t a n  2sin(kn+i) - 2~-~+1+~ _ 2 a r c t a n ~  ~ - ) .  
o=l B 

Using the symmetry  property ro = -~-2~+2-o on the first sum above and then intro- 
ducing 2u + 2 - 7 = u + 1 + a so the limits on a go f rom u to 1, we finally obtain 
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I /  ° 

+  arctan( Sin/% 
where i = 1,- . - ,n .  The remaining kj are related to these by the antisymmetry 
constraint. 

A similar analysis can be done on the second equation (2), and it is possible to 
write (2) in the equivalent form 

22~(arctan(2r~+l+~Bsin(kn+i).) +arctan(2r~+l+~Bsin(kn+'))) 

= 27rc~ + 2 arctan ( - - -b- - )  + 2 arctan B 1 

+2~-~ arctan r"+l+~+r"+l+7 +arctan(T"+'+~-r"+l+~). (4) 
"r#a \ " B B 

The variables in these equations will be expanded out in formal power series. A 
problem arises in that these series must be initialized in order to be able to solve for 
the other unknowns at higher orders. Although this problem can be approached 
numerically, the required quantities are just the Htickel values which arise out of 
Hiickel theory. At B = 0, the values of the momenta are given by the Hiickel values, 
which will be designated k} °) and are given as follows: 

k(O) = 0 
n + l  

27r l.(o) =/~(o) = ~ - i ,  (5) 
"~n+2i "~n+2i+l 

where i = 1,. -., u. Further, in the range 0 < B < oe, none of the kj should coincide, 

0<k ,+ ,  < k n + 2  < " "  " <kN-1 < k N .  

The limiting values of the 7-~+1+~ as B approaches 0 are given by 

=sin(   ) +l+~ ~-c~ . (6) 

Consequently, in order that the k,,+i go over into their Hiickel values as B goes to 
0 in the Lieb-Wu equations, the set of functions of the form 

2 arctan (2 sin(k~+i)_i ~-~+1+~) 

must approach certain limiting values, namely +Tr, as the variable B tends to zero. 
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The asymptotic behaviour of the arctangent functions which is evident from 
the table suggests that we make the following substitution in the Lieb-Wu system: 

2 arctan(x) = ±Tr - 2 arccot(x) (7) 
> for x <0, x # 0 when -rr /2  ~<arccot x<~Tr/2 and arccot x---~ 0 as Ixl-+o¢. It is the 

argument of the arccotangent which becomes large, and in this case, it has the fol- 
lowing expansion: 

(3O 

arccot(x) = ~ X -(z"+l) . 
m = 0  

However, as far as the formal power series expansions are concerned, the arccotan- 
gent can be replaced by arctangent of the reciprocal of the argument in the function. 
The arctangent is much easier to manipulate symbolically. In this case, the system 
of equations is 

A,.~(o) ~ B 
Nkn+i . . . . .  n+i + 2 arctan 

~=1 sin(k.+i) ~- 2r.+1+ 

+ 2 arctan (2 sin(k.+~)B 2 r . + 1 + ~ ) ) +  2 arctan (2 s i n ( k ~ + ~ ) ) ( 8 )  

(arctan (2 - arctan (2 sin kn2 
( B ) arctan(, B "~ = 2rro~ + arctan ~ + \2"ru+l+a,] 

+~--~(arctan(r .+l+Br~+,+~)+arctan ( . B r ~ + l ~ ) .  (9) 
7#~ + \rv+l+a -- 

Formal power series expansions for the variables in the Lieb-Wu equations can 
be written down. It is found that a new variable must be introduced to carry out 
the expansions of the kn+i, namely, we introduce the variable 

s 2 = B .  

The expansions of the momenta will contain odd powers of s. In terms of the vari- 
able s, which is related to B through this equation, the momenta and spin variables 
r are to be expanded in powers ofs as follows: 

OG 

kn+i k(O) ~ a (m) sm = ' - ~ + i + ~  =+i , (10) 
m = l  

o o  

.,.(o) t(m) ,an 
T v + I +  c~ ' v+l+~ + ~ (11) ~v+ 1 +o~ ° " 

m = !  
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Substitute these expansions into the Lieb-Wu equations, and then expand the equa- 
tions out in powers ofs. From the expansions, it is found that it is possible to solve 
for the coefficients A,,) and t (m) analytically one order at a time in terms of the Un+i v + l + a  
variables obtained at lower orders. This procedure will give k,,+i and %+1+~ as 
power series in s. The power series for the k,,+i can be used to calculate a series repre- 
sentation for the energy in powers of the variable s. 

3. First-order analysis for the ground state 

In terms of the variable s, the system of equations takes the form 

( ) Nk,+i = Nk~°)+i + 2 arctan s2 
~=1 2 sin(k,+i) + 2r,+l+~ 

S 2 

+ 2 arctan (2  sin(kn+i~s2~ 2%+1+~) )+2a rc t an (2s in (k ,+ i ) ) ,  (12) 

. s 2 

arctao  --- 27ra + arctan ~ + \2Tu+l+a] 

( ) ( ) + Z arctan . sa s2 . (13) 
7 #  a \Yv+l+a + r.+l+7 + arctan ~'.+~+a Z T.+l+-y 

To carry out the first-order analysis, we are concerned with the terms which are 
linear in s which arise from the expansion of the terms in these equations. 

For the case in which i = 1, we have v(°) = O, and in this case, the term which is '~n+l  
linear in s comes from the term 

2 arctan (2 sin~k,+l) ) 

and gives the equation 

_~rvO) 1 
. . . .  .+1 + ~ = O. 

"~n+l 

This has the general solution 

kO) = iN- l~2  
n + l  

On account of this cancellation, the Lieb-Wu system decouples into blocks 
which can be solved independently of each other. To first order in s, (12) gives the 
following pair of independent equations 
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_ ~r/~(1) + 
. . . .  n+i 

1 

__t(1 ) + cos(k~O)+i)k~l)+ i = O, 
v + l + ~  

- -  M b ' ( l )  -t- 1 
. . . .  n + i + l  _t0)  (0) (1) = 0, 

v+l+a + c°s(kn+i+l )kn+i 

where i = 2a  and 2a + 1 where there are three unknown variables. A third equat ion 
comes f rom the second Lieb-Wu equation (13), 

1 1 

-2'(1)',+,+~ + 2c°s(k~°)+i)k~i -2'(1)'~+1+~ -{- 2c°s(k~°)+i)k~l)+i+l 

To simplify these equations, let us introduce the notat ion t = t(1).. , x = k(1.) i, 
y = k~l)+i+l. To summarize,  the first-order coefficients in the expans~onsof the vari- 
ables for a general 4v + 2 member  ring requires that we solve the following simple 
set o f  coupled equations, 

a(x  + y) = 2 t ,  

N a x  2 - N x t  = 1, 

N a y  2 - N y t  = 1, 

where a = cos(k~°+)i). If  one subtracts the last two equations, one obtains the 
equat ion 

N a ( x  + y) (x - y) - U t ( x  - y) = O, 

which implies that  either x = y or a(x  + y) - t = 0, and the second equat ion implies 
that  t = a(x  + y).  Putting this in the first equation, the following constraint  is 
obtained: 

x = --y;  

hence, t = O. Setting t = 0 in the last equation will give explicit expressions for x 
andy ,  that  is 

1 
kn 1) = 4- +i  

( N cos (  k~°)+i) ) l /2 ' 

1 
kO) n + i + l  ~ 2t2 

( N  cos(k~°)+i) )l/2 ' 

and the equat ion which was derived above, namely x = - y ,  specifies the difference 
in relative sign between x and y. The other possibility, x = y, does not  lead to a 
mathemat ica l ly  consistent solution. 
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4. General expansion to fourth order in s 

It is shown how the L ieb -Wu variables can be expanded  consistently to four th  
order  in the variable s in general for an N = 4u + 2 member  ring, and  tha t  these 
expansions can be used to calculate the/3-1 cont r ibut ion  to the energy of  the system. 
It will be shown that  one can calculate this contr ibut ion for the case of  very large 
rings, and  these results can be used to calculate an approx imat ion  to ((3) by com- 
par ing the finite N calculation for the/3 -1 coefficient in the expansion of  the energy 
per  particle for the infinite chain [5]. 

It will be shown first how the coefficients to four th  order  in s cont r ibute  to the 
energy, which is given by the expression 

N 

E = - 2 f l  Z c o s k /  (14) 
i=1 

This can be expanded  in powers of  s once the expansions for the m o m e n t a  have 
been obtained.  

To  calculate an expansion for the energy in terms of  s, an expansion for the 
COS (ki) which appear  in the energy mus t  be carried out. 

Expanding  the corresponding cosine term in the energy for k,+l,  one has 

/r(1)2c2 ( 1  k(1)4 ,~(3) .(1) ~ 4 
2cos(k .+l )  = 2 - ' ~ . + 1 ~  + i-2 .+l - ztc.+ltc.+lJs + ' " "  

For  the conjugate  pair  k.+2~, kn+2c~+l where a = 1,. -., u, it is useful to g roup  the 
terms in pairs and  expand to take advantage of  sign cancellations on account  of  the 
symmet ry  condit ions:  

2(cos(k.+2~) + cos(kn+2~+l)) 

= 4cos(k(n°+)2~) + ( - 4  " (0) (2) (0) (1)2 sln(kn+2~)kn+2a - 2 cos(kn+2~)kn+2~)s 2 

"2"  ,.(0) .k(2) . (1)2  4 i "it'(°) ~ / r (4 )  lc,-oCk (°) av(1)4 q- ~ Sln~Kn+2a ) n+2a Kn+2a -- S ,,V~n+2c~/,~n+2~ Jr_ 6 "°k n+2aY'~n+2a 

(0) (2)2 C ' k  (°) ,k(3) .(1) , 4 - 2 c o s ( k n + 2 ~ ) k . + 2 ~ - 4  osk .+2~) n+2aK.+2a) s + ' ' ' ,  

where we have just  kept  terms out  to order  s 4. I f  this equat ion  is s u m m e d  over a 
f rom 1 to u, and  the expansion for 2 cos(k.+l)  is added  to the result, the energy to 
four th  order  in s can be calculated. Summing  the geometr ic  series in the cosine 
gives 

cos ~ - a  = sin(~) 
a=l 

Collect ing terms, it is found that  
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E (4) 2 t-(i) E ( 4  c o s ( k ~ ) 4  sin(k~°+)2c,) 
- 2 / 3 -  sin(~) t- -'~n+l + 

ot=l 

((1/, .(1)4 _ 9/,-(3) b-(1) - 2cos(k~°+)~)k~c~) s 2 + \,lZ~n+, ~ n + , ' ~ n + l ,  

v 

w--,, 2 in,k(O) ,k(2) k(1)2 . (0) (4) lcos(k(O ) ~k(1)4 -'~ 2..~ ~ S ~ n+2c~) n+2a n + 2 ~ -  4sln(kn+za)kn+2c~ + 6 k n+2a] n+2~ 
c~=l  

(0) (2)2 4 ,.(0) , . (3) . (1)  ,'~ 4 
- 2 cos(kn+z~)k~n+2~ - COStXn+Z~)Xn+ZJCn+Z~))  S . 

Notice that if we divide both sides of this equation by N, the limit of the first term 
as N goes to infinity is just 2/7r and then multiplying by -2/3, one obtains the first 
term in the expansion of the energy for the infinite chain. It is noted that (14) is 
equivalent to the results of perturbation theory, as will be shown by explicit calcula- 
tion in a forthcoming paper. 

5. Solut ion of  equat ion for arbi t rary N 

The equations for the general case rapidly become more complicated. However, 
by considering each term individually, the contribution at each order in s which is 
made by a specific term in the set of equations can be written down, and then pro- 
grammed [7,8]. 

The expansions are carried out in powers of s by first writing down the Lieb- 
Wu equations in the form given below and substituting the series (10) and (11). 
Consider the first set of equations (12). Suppose i = 2a is not equal to one. Then 
there is a term in the sum in which "y = a, and the resulting term can be taken out of 
the sum on its own. Dropping the unimportant constant, the first system of equa- 
tions becomes 

( o) Nkn+a,~ = 2 arctan 2 sin(kn+2~) + 2T~+1+ 

( S2 -- 2"rv+l+a) + 2 arctan k2 sin(kn+2a) 

+ ~ ( 2 a r c t a n (  . s2 ) 
\ \2  sm(kn+2~) + 2~-~+z+~ 

-yea 

+2arctan(-  ~ S2 
\2  sin(kn+2~)- 2 r~+ l+~) )+  2 arctan (2 sin(kn+2~)) " 

(15) 
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Since the Hfickel variables are given by (5) and (6), impor tan t  cancellat ions occur  
when  the second te rm on the right is expanded out  in powers of  s, 

S 2 2arctan(2sln(kn+2a) + 2 " r v + l + ~ ) "  " - -  

s 2 

2 sin(k~°+)2c,) 

(o) (1) t(1) 
c°s(kn+zo)kn+2a + "v+l+,x S 3 + . . . .  

sin2 (k~°+)2~) 

The  other  te rm is 

( ) s 
2a rc t an  2 s i n ( k . + 2 ~ ) -  2-rv+l+a = ( t('}.+l+~ - c°s(k~°+)z~)k~2o) 

2t(2) . , . ( 0 )  , . (1 )2  (0) (2) 
+ ~+l+~ + Sln(aZn+2a)tCn+2~ -- 2 cos(kn+2a)kn+2~ s2 

c,O) c ,k(O) ,k  O) ,2 + ' " "  
\ " v + l + a -  OS~, n+2c~) n+2oJ 

On the other  hand,  when 7 # a,  the expansions are given as 

( s2 ) 
2 arctan 2 sin(k~°+)2~ ) + 2~-,+1+7 

,.,~s:v(o) ~z.(~) t O) 3"2 "1  V"n+2a/'"n+2a + v + l + 7  $3 + . . . 

. , .(o) (sin(k(O+)2~) _ (o) ,2 sin(kn+2a) + 'v+1+7 -1- T~+l+3, ) 

and 

2arctan(as         
t(1) (0) (1) 

__ $2 "v+l+7 -- c°s(k,+2~)k,+2~ s 3 

-sin;k(O)2x~ ~+ ) - - ( ° )  4 ~ ~'~+ ;/sin'"(°)2~ , _ _ ( 0 )  ,2 + ' " "  M+l+-r ~ v+l+7) 

It  has been poin ted  out  that  a linear te rm in s appears  on  account  of  the cancella- 
t ion no ted  above. The first-order contr ibut ions  have already been derived, and  so 
we use the results obta ined to go to higher orders. 

Similarly, if we set i = 2a  + 1, again not  equal to 1, and  remove the 7 --- a te rm 
f rom the sum, one has 
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( ) Nkn+2a+l = 2 arctan 2 sin(kn+~+l) + 2~-~+1+~ 

( s~ - 2r~+1+~) + 2 arctan \2 sin(kn+~+l) 

) + XJ" (2 arctan (. s 2 
\ \ 2  sin(kn+2c~+l ) + 27-v+1+ 

7=1 
7¢c~ 

+ 2arctan(2 s2 2r~+1+7)) sin(k,+~+1) - 
s 2 

+ 2 arctan (2 sin(k-~+2~+li) " (16) 

The final set of equations is 

arctan(~2 sin(k~+l)S~+ 2.rv+l+a ) - arctan(2 s2 sin(k~+,)- 2T~+~+2) 
s 2 

~2 sin(kn+2a) + - ;/ 
( sa ) - a r c t a n  (2 sin(kn+~+~)- 2-r~+1+~) + arctan \2 sin(kn+2~+l) + 2r~+l+~ 

arctan -- - 
i=2 2 sm(kn+i) + 2r~+1+~ 

i7~2~,2t~+ 1 

= arctan (r,+@~) +arctan( sa \2"r~+l+~J "~ 

+ ~ .  (arctan (- s2 r~+l.~)+ arctan (.r~,+l+ ~ %+1+.~)). (17) 

The required terms are collected together in tables 3 and 4 for the third-order 
and in tables 5 and 6 for the fourth-order terms for the expansion in s. The second- 
order calculation will be treated in detail, and the contribution to kn+2~ is given by 
the following equation: 

2 + sln(k,+2~)k,,+2~ - 2c°s(k~+2~) ,,+2~ Nk(2 ) 1 2t(2) . (o) (1)2 (o) k(2) 
- -  r; 0) + / n+2~ 

sinw~+~, --,-~+l+~ - -  " \ n+2o~J n+2o:) ] 

+ ~ (  1 1 / 1 
7=1 sin(/~°+)2j + 7"(721+ 7 ff sin(k~O+)2a ) - "r(,O21+7] ~ sila(k~°+)2a ) 
7~a 
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Table 1 
Def'mition of  quantities which appear  in contributions at fourth order in s f rom L ieb -Wu equations.  

_ . )~  t.0)4 l.(2) 
An+2a ~ ~ et,~n+2o~n+2a 

6:1:0)4 k(2) nn+2a = ~a'~n+2a n+2a 

C.+2,~ . .  3k(l) .(2) .(3) -~- t48Cct n+2c~Kn+2e~Kn+2~ 

D,,+2~ = 3k~l)+~os~ 

E.+~ = - 2 4 c ~ k ~  

F.+2a = -3s~k~l)+~ 

Gn+2~ = 6c~k~2)+2~ 

co, = cos(k(°+)2a ) 

s~ = sin(k~2~ ) 

where a = 1 , . - - ,  u. A second equation which also contains the variable t (2) 
v + l + ~  

(nO)+ = k (0) the same value of/3 = c~ comes out by setting i = 2a + 1 and since k 2a n+2a+l  

in the sum provides the same cancellation. There is then another equation identical 
with the above but with k~2~ replaced by k~2~+1 everywhere. The first-order anal- 

ysis yields the conditions t(,~,+~ = 0 and k(~l+)z~ = -k(~2~+1. Therefore, it follows 
easily from the equation above and its k~2+)2a+ 1 companion that 

kn(2) = k (2) 
+2~ n+2c~+l " 

Table  2 
Numer ica l  values for b¢~[ and approximat ions  to ((3) for rings with N = 6 to N = 8738. The approx- 
imate  z~v (3) is calculated usingf~42~). The absolute errors F = IzN(3) - ( ( 3 ) 1 / ( ( 3 )  are also given. 

N :51 zN(3) r 

6 0.03356481481 1.189394212 1.3 × 10 -2 
10 0.03379101966 1.197409948 4.7 × 10 -3 
14 0.03385488195 1.199672957 2.4 × 10 -3 
30 0.03310743938 1.201535368 4.3 × 10 -4 
34 0.03391069544 1,201650749 4.1 × 10 -4 

102 0.03392088250 1.202011735 3.7 × 10 -5 
514 0.03392210695 1.202055124 1.5 x 10 -6 

2570 0.03392215514 1.202056832 5.9 × 10 -8 
8738 0.03392215697 1.202056897 5.0 × 10 -9 
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Table 3 
Third order in s with symmetry conditions applied to kn+i  and rv+l+a. 
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s 2 
2 arctan 2 sin k,+i + 27"v+1+~ 

(sin(k~°+)i) + "r.+l+~,) 2 

s 2 (o) O) 
2 arctan 2 sin k.+i - 2r.+1+. - c°s(k'+i)k'+i 

(sin (k~O+)/) (o) .2 - %+1+~) 

: cos(G)kL 
2 arctan 

2 sin(k.+i) sin 2 (k~°+)i) 

T(o) = s in  (k(O+)/) 
+1+~ 

s2 (o) O) cos(k.+i)k,+i 
2arctan(2sin(k.+i) + 2r~+1+~) • 2 (o) 4sin (k.+i) 

s2 
2 arctan (2 sin(k.+i) - 2~'.+1+.) 

cos(k(O)+i)(k~3)+i ( , )3  ~:_:1.(o) ,1.(2) i.(1) 
- k,+ i/6) - alukr~n+i]r~n÷ir~n÷ i 

2 cos2(k(L)ki   

(2 cos(k~°)+i)k(~i . ,.(o) ,.(,)2,2 - -  S l n t K n + i ) K n +  i ) 

4cos3(k~°)+i)k~ ~ 
I 

12 co~3 :k(O) ~vO)3 
~ n+il '~n+i  

S o l v i n g  t h e  f i r s t  e q u a t i o n  a b o v e  f o r  k~2+)2a , o n e  o b t a i n s  

3 2 t  (2) ~inrk (°) ~k (1)2 
2NkI2)+2c~-. .  (o---S-- + N , + l + a  + ° ~ n+2a: n+2a 

ZTu+ l+a 2 COS (k~°+)2a) 

1 

+ ~ T(O) ,,.(0) 
7 # a  v + l + a  + ' v+ l+7  

+ 
~(o) - _(o) " 
.+l+,~ - ~,+I+7/ 

T h e  l a s t  e q u a t i o n  w h i c h  r e l a t e s  k (2) a n d  t (2) n+2a u+l-l-a c o m e s  f r o m  t h e  s e c o n d  L i e b - W u  
e q u a t i o n ,  a n d  it  is g i v e n  b y  
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T a b l e  4 
T h i r d  o rde r  in s f r o m  L i e b - W u  cont inued .  

s 2 (o) (,) cos(kn+i)k.+i 
2 a rc tan  

2 sin k.+i sin 2 (k~°+)) 
s ~ 

a rc tan  0 
T v + l + a  

s 2 
a r c t a n - -  

2~-,+ l +~ 

s 2 
a rc tan  

7"v+l+~ + 7"v+1+7 

s 2 
arc tan  

Y v + l + a  - -  7"v+l+ 7 

kn(°+) | = 0  

s 2 vO) 
'~n+ l 

2 a rc tan  2 s in(k.+l)  + 2v .+ ,+ .  r~°+)2 

: 
2 a r c t an  2 sin(k.+,  ) - 2~-.+,+a ~-(°+)~+c. 

s 2 :v(3) (03 - ,  ~.+1 - k ~ . + , / o )  1 
2 a rc tan  2 sin(k,+,  ) v0)2 19/: (1)3 

r~n+ l * ~ '~n+ 1 

~(o) 
' u + l + ~  

1 1 
- - 4  
"r(°).+l+. 4 sin(k~°+)2. ) 

1 
+ + 

9.(2) • , . ( 0 )  , . ( 1 )2  _ 2cos(k~O)+2~)ki2)+2~ _~ ~ t v + l +  c~ -it- Sln~Kn+2c~)Kn+2o ~ 

4 cos2 (k~°+)Ea) k~l+)~ 

,(2) • , .(o) , - 0 )2  _ 2c,,s(z.(o) ~k(2) 
~v+l+t~ -t- Sln~Kn+2a)gn+2c~+ 1 ~ k'~n+2a] n+2cx+l 

4 sin (k~°+)2~) 4 cos2 (k~°+)2~)k~2 ~ 

l (s 1 1 ) 
-t- ~ i=2 in(k~O+)i) + ~_(o),.+l+a sin(k~°+)i; - "r~°+)l+a 

i#2a ,2a+l  

1 1 1 / 
- -  4 ,, (o) t- (o) + ~_(o) 4 ~_(o) - ~.(o) " 

z'r~+l+a ,~#c~ \ v+1+~ v+l+,~ 'v+1+a 'v+1-~] 

The sum over i can be turned into a sum over 7 by setting i = 27 and 27 + 1 con-  
secutively.  A factor o f  2 must  n o w  be included since 7 goes from 1 to v and 7 # a.  



P. Bracken, J. C~ek / Calculation of  energy for the Hubbardmodel 

Table 5 
Four th  order contr ibutions f rom terms in L ieb -Wu equations. 
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s 2 

2 arctan 2 sin(k.+/) + 2r.+1+~ 

sa  

2 arctan 2 sin(kn+i) - 2"rx,+l+c, 

s 2 

2 arctan 2 sin(k.+i) 

r = sin(k (°)) + T(4)S 4 

2 arctan 
s 2 

2 sin(kn+i) -b 2Tv+l+a 

2 arctan 
s2  

2 sin(kn+i) - 2"r.+l+a 

s 2 

2 arctan 2 sin(kn+/) 

s 2 
2 a r c t a n - -  

Tt,+ l + a  

S2 
arctan 2r.+l+o 

cos:k(°)i'k(2) il,n+yn+ ~:-,1.(O) , 1.(1)2 2 - -  alj,kr,,n+ijr~n+ i 

2(sin(k~°+)i) + T~O+),+,~) 2 

C_^2// . (0)  \ 1.(1)2 
u~, ka.n+iJ~n+i 

(0) ~3 
(sin(k~°+)i) + %+1+.) 

~,+'k(°) ),+'k(2) i .:_ :1.(o), ~.(')2 2 COS - -  ~lll~r~n+i)t~n+ i 

2(sin(k~O+)i) (o) ,2 
- -  T ~ +  1 +or ) 

C^~2/1.(0) "~ t.(1)2 
u~ kr~n+i)r~n+ i 

(sin(k~0+))_ %(o+) +,~)3 

(cos(k~O)+i)k~2)+i - . (o) 0)2 sm(k~+i)k~+ i/2) 

sin2 (k(°+)i) 

C^~2 ; ~.(0) "~ 1.(1)2 
u~ ~ttn+i}ttn+ i 

q" sin3 (k~0+)i) 

c°stk(°)i'k(2)it n+ : ~+ ~:" :i.(o) ,1.(')2 2 - -  ~11a~r~ n+iyr~n+ i 

8 sin 2 (k~°)+i) 

C^.2  th(0) \I.(1)2 
ua  ~tCn+iJr,,n+i 

4 8 sin3 (k(0+)i) 

An+i  _ 9 4 C  3 - / r( l)2b -(4) .a- 24~  k 0) T (4) 
n+i'~n+i'~n+i ~ n+i n+i v + l + a  

24ctk~l)+~ 

Bn+i q- Cn+i  -Jr D n + i  q- En+i  q-  Fn+i  q-  a n + i  

q ~ -  4 - 0 ) 4  
Zt4C i Kn+ i 

c°s:k(°)i\k(2)ik n + )  n+ ": :f.(O) w.(1)2 --  ~ullr~n+i]ll.n+ i 

sin2 (k~°+)i) 

c o s 2 : k  (0) ~k(l)  2 
n+il n+i 

sin3 (k~°+)i) 
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Table 6 
Fourth order contributions from terms in Lieb-Wu equations. 

S2 
arctan 

%+1+e, + rv+l+.r 

s2 
arctan 

Tv+l+o -- Tv+l+7 

k(O)  = 0 n+l 
t.O)2 

,2 "~n+l 
2 arctan (0)3 2 sin(k,+1) + 2r~+1+~ G+l+~ 

1.0)2 .2 "~n + 1 
2 arctan 2 sin(k.+l)- 2r.+,+o ~?~+~ 

s 2 
2 arctan 2 sin(k.+l ) 

M o r e o v e r ,  us ing the previous  results t'(1) -z-(l) and  /,.(2) /,.(2) '~n+2a  ~ '~n+2~+1 '~n+2c~ ~--- ' "n+2c~+1'  we 
obta in  the equa t ion  which  relates t(~2+) 1+ ~ to k~2+)2~ as follows: 

t(2) c ,.(0) ,k(2) l oinrt.(o) ~t.(l)2 
v+l+c~ ~ O S [ K n + 2 o t )  n + 2 a  2 ° k'~n+2~Y'~n+2c~ " 

Subst i tu t ing this into (15), we obta in  the fol lowing simple equa t ion  for  t-(2) in "" n-t-2~ 

t e rms  o f  k n o w n  quanti t ies ,  

+2~ - .. ( 0 ~  + (0) r(0) ~- r(0) r(0) " 
ZT"v+ l+a  3 '#~ \7"u+l+c~  + v + 1 + 7  v + l + .  v + 1 + ' 7 /  

Subst i tu t ing  into the equa t ion  above,  one  obtains  an express ion for  t (2) The re  
is one  final case to be t rea ted,  n a m e l y  the case i = 1, which  de te rmines  k ,+l .  The  

equa t ion  which  results  to second o rder  in s is given by 

~(2) 
~/~(2) "n+l 

a n d  this implies that ,  for  any  N-cha in ,  the general  so lu t ion  is 

kn 2) = 0 
+1 

T h a t  is, the second order  coeff ic ient  o f  the var iable  k,,+l is a lways  zero. 
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6. Calculat ion o f  third- and fourth-order variables 

In order to calculate higher-order coefficients in the expansions of the variables, 
the function terms in the Lieb-Wu equations are expanded out. The required equa- 
tions which must be solved at each order can be constructed from these tables by 
taking the corresponding terms from the given table and replacing the term in the 
Lieb-Wu equation as formulated in the last section to which the term corresponds. 
These equations can be solved for the coefficients of the variables at that particular 
order. In calculating the elements in the tables, it should be pointed out that the con- 
straints on the coefficients given previously have been used in order to make the 
presentation more compact. 

To third order in s, the equation which determines k(,3+) 1 is given by 

( /'(1) /'(1) '~ ~;/'(3) /.(l)3 
A//.(3) "~n+l '~n+l | ~ ' ~ n + l -  '~n+l 1 
. . . .  n+l = c ~ = l  "Jv+l+a--(0)2 T~O)+~+cz/- iq/. (1)2 19/-(1) 3 " 

~'~n+l x z.r~n+ 1 

Solving this for k(,3+)l, it is found that 

k(3) _/.0)3 " 1 1/.(1)3 1 
n+l = '~n+l Z (0)-----"2~ -~- 12'~n+1 9.4/.(1) " 

a=l  Tz~+ 1 +c t . . . .  n+l 

To third order in s, there is one independent equation in k~3+)2~ given the symmetry 
conditions, and we simply present the result after some simplifications, 

(o) (1) (o) (1) 
/.(3) = { - c°s(k,+2a)k~n+2a c°s(kn+2c~)k~n+2a 
'~n+2a ~ ' ( S ~ ~ T ~ )  2 -- ' s i ~  ---- -- ,2 /  k I k+2a) -- 7"u+1+3,) ) 

(0) (l) ( 1 2k22+)~ (1)4 5 cos(kV+2~)kn+2~ 1 (1)3 
kn+2 ~ + 

8Nsin2(k~°+)2c,) 24 ~ /.(1) cos2/k(O) ~k0) ] "  "~n+2a k n+2a] n+2~/ 

(18) 

The fourth-order contributions can be extracted from each of the terms in the 
Lieb-Wu equations in the same way that the third-order contributions were 
handled. The terms which yield cancellations have already been separated out to 
give eqs. (15) to (17). To obtain the equations for the fourth-order variables it is 
necessary to extract the corresponding terms from tables 5 and 6 and then substi- 
tute into these two equations, exactly as for the case of the third-order analysis. The 
details are mode tedious, and will be omitted here. 

From eqs. (15), (16) and (17), a system of three linear equations in the three 

unknowns k~4+)za , k~4+)2a+l , and T~4+) 1 + a  is obtained for each a from 1 to u. The symme- 

try constraint/.(4) _/.(4) derives from solving these. It is quite useful in terms '~n+2a+l - -  '~n+2t~ 
of programming to implement this constraint directly, and to work with two vari- 
ables. A set o f a  = 1,. • -, u structurally equivalent blocks of equations results, such 
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that each block depends only on these three variables. Notice that these equations 
which give the fourth-order variables depend only on the variables at lower orders 
which have already been calculated, and one may assume are known, since the cal- 
culation proceeds order by order. 

At this point, expressions for all of the terms on the right-hand side of the expres- 
sion E (4) have been obtained, and by straightforward back substitution, an expres- 
sion for the energy to the required order is obtained. 

It has been shown here that the Lieb-Wu system decouples into blocks of three 
equations each, which contain only three unknown variables at a time ~(i) '~n+2c~, 

orders, and so we as as are ...k-O~2~+l, t!i)l+~., well the variables determined at lower 
free to solve at order i by simply solving each of the a = 1, •. -, v blocks separately. 
This allows for the complete solution to order four of the Lieb-Wu equations in 
this limit. 

It has been shown by explicit calculation of individual terms that this decoupling 
holds to fourth order in s, in the sense that at any order in s, there are three indepen- 
dent equations in the variables k~2a , k~i)+2a+l, t~l+ ~ which depend only on the vari- 
ables from only lower orders. These have already been calculated and are 
assumed known. None of the unknown variables from higher orders appear in this 
set. This decoupling is closely connected with the cancellation that takes place 
upon expanding the functions. Although we have no formal proof at the moment, it 
is conjectured that this decoupling persists to arbitrarily high orders in s. Finally, 
these results have applications to the interpolation problem which is introduced 
and discussed in [9,10]. 

Appendix 

NUMERICAL APPROXIMATION OF ((3) 

It has been shown that by expanding the momentum variables to fourth order 
in s, the cosine terms which appear in the energy can be consistently expanded to 
fourth order in s. Since s is proportional to fl-1/2, this represents a contribution of 
fl-2 in the expansion of the cosines, and when the factor fl outside the cosine terms 
is included, this analysis leads to the fi-1 contribution to the energy. It should be 
emphasized again that this analysis was carried out for arbitrary N = 4v + 2, and 
so the fl-1 contribution can be calculated for very large ring sizes. The values of N 
considered have relevance to the constructability of a regular N-gon with a 
straightedge and compass. 

Since the contribution can be evaluated numerically for very large N values using 
this analysis, this leads to the possibility of estimating the Riemann zeta function 
((3). This is done by comparing and equating coefficients of powers of fl between 
the energy per particle of the finite system, and the energy per particle in the expan- 
sion for the infinite chain. If  we represent the corresponding coefficient from the 
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finite ring expansion of the energy per particle in powers of 3 -1 by aN,-2, then 
equating coefficients gives the following simple equation: 

25 
327r 3 7~(3) = ]aN,-2[. 

Solving this equation for if(3) and scaling az¢,-2 to go from 3 back to s, one 
obtains 

327r 3 
laN,_2[ = be(N2)l , if(3) = 17-----ff 

wherefff  ) is the coefficient ofs  4 in the expansion for the energy per particle. As N 
becomes large, the values of f f f  ) obtained by calculating aN,-2 ought to yield an 
approximate value of ff (3) which tends to the exact value of 

((3) = 1.202056903159594285. 

By using this technique, the coefficient fff) has been calculated for extremely 
large but finite particle numbers N. The calculation has been done for rings with 
N ---- 6 particles all the way out to N = 8738 particles, and these results are collected 
together in table 2. 
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